SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Artificial Intelligence & Machine Learning (18CS0535)

Course & Branch: B.Tech - CSE

Regulation: R18

Year &Sem: IV-B.Tech & I - Sem

UNIT –I INTRODUCTION

1.	a	Mention the categorization of intelligent systems	[L1][CO1]	[2M]	
	b	Define components of AI program.	[L1][CO1]	[2M]	
	c	What are the foundations of AI?	[L1][CO1]	[2M]	
	d	List characteristics of a problem.	[L1][CO1]	[2M]	
	e	Write about the analysis of search methods.	[L1][CO1]	[2M]	
2.	a	Illustrate various characteristics of Intelligent agents.	[L3][CO1]	[5M]	
	b	Express the Approaches of Artificial Intelligence.	[L2][CO1]	[5M]	
	a	Decide PEAS for at least four agent types?	[L5][CO1]	[5M]	
3.	b	Recall the applications of Artificial Intelligence?	[L1][CO1]	[5M]	
	Sk	Sketch the following agent types and illustrate its working principle with			
	me	merits, demerits.			
4.	i) \$	i) Simple reflex agent. ii) Model based agent. [L3][CO1]			
	iii) Utility based agent iv) Goal based agent				
_	a	Compare and contrast Human Intelligence to Artificial Intelligence.	[L4][C01]	[5M]	
э.	b	Discuss about agents and various Properties of environment.	[L2][CO1]	[5M]	
6	a	Explain in detail about structure of Intelligent agents?	[L2][CO1]	[7M]	
0.	b	Adapt the suitable strategy to solve a N-Queen Problem.	[L6][CO1]	[3 M]	
_	a	Explain water jug problem in AI with operators involved in it.	[L2][CO1]	[5M]	
7.	b	Design a solution strategy for vacuum Cleaner toy problem in AI.	[L3][CO1]	[5M]	
		Define an agent. What are the characteristics of Intelligent agent?	[L1][CO1]	[6M]	
	a	Describe typical Intelligent system briefly.			
8.	b	Give your opinion how Artificial intelligence helps in achieving Data	[L5][CO1]	[4M]	
		Security. Justify your opinion.			
	a	Illustrate the different Artificial Intelligence problems?	[L4][CO1]	[5M]	
9.	b	Predict and analyse future application areas of Artificial Intelligence.	[L5][CO1]	[5M]	
10.	a	Explain the components of problem definition with an example.	[L1][CO1]	[5M]	
	b	Predict the foundations of Artificial Intelligence?	[L5][CO1]	[5M]	
			1		

UNIT –II PROBLEM SOLVING METHODS

1	a	What is goal formulation?		[L1][CO2]	[2M]
	b	Define initial state.		[L1][CO2]	[2M]
	c	Discuss about path cost.		[L1][CO2]	[2M]
	d	What is parent node and child node?		[L1][CO2]	[2M]
	e	What are the four ways to evaluate an algori	thm? Name them?	[L1][CO2]	[2M]
2	a	Define local search algorithm. List varior available in AI. Show how it is different techniques.	us local search techniques from conventional search	[L1][CO2]	[5M]
	b	Demonstrate working of Alpha – Beta pr	uning with neat sketch.	[L2][CO2]	[5M]
3	a	State and explain in detail about optimization	ation problems?	[L2][CO2]	[5M]
	b	Describe the process of simulated anneal	ing with example?	[L1][CO2]	[5M]
4	a	How A* Algorithm finds a shortest dista state? Show how evaluation function cal	nce between Source and Goal culated in A*?	[L2][CO1]	[4M]
	b	Simulate the A* Algorithm for the above Starting State, G-Goal State.	e problem, Here S denotes	[L3][CO2]	[6M]
5	a	Analyze the concept of depth Limited sea Bidirectional search techniques?	arch, Uniform cost search and	[L4][CO2]	[6M]
	b	Review the process of simulated annealing	ng with example?	[L2][CO1]	[4M]
	a	Summarize various types of Hill climbin	g search techniques in AI.	[L2][CO2]	[5M]
6	b	Outline the concept of breadth-first searce example. List performance measure of B	h technique with suitable FS.	[L2][CO2]	[5M]
7	a	Explain in detail AO* Algorithm with su	itable example.	[L2][CO2]	[5M]
/	b	Examine how the steepest accent hill clir	nbing works.	[L3][CO2]	[5M]
Q	a	Explain about fully and partial observation search algorithm?		[L2][CO2]	[6M]
0	b	Justify how optimal decisions in gaming helps to maximize chances?		[L5][CO2]	[4M]
9	a	Describe the backtracking search algorithm with examples?		[L2][CO1]	[7M]
	b	Report different ways to evaluate an algorithm?		[L3][CO2]	[3M]
	a	Define constraint satisfaction problem. Recall the Crypt arithmetic Problem of CSP in AI.		[L1][CO2]	[3M]
10	b	Devise a solution for the following Crypt arithmetic Problem of CSP in AI.	SEND + MORE MONEY	[L6][CO2]	[7M]

UNIT –III SUPERVISED LEARNING

1	а	What is supervised learning?	[L1][CO3]	[2M]
	b	State Pruning.	[L1][CO3]	[2M]
	с	Identify types of pruning processes.	[L2][CO3]	[2M]
	d	Define classification.	[L1][CO3]	[2M]
	e	What is meant by noise in learning?	[L1][CO3]	[2M]
2	a	Define machine learning. Why machine learning is important and discuss with example?	[L2][CO3]	[5M]
	b	List out an applications of machine learning.	[L1][CO3]	[5M]
3	a	What is classification? Where do we use classification with an example?	[L1][CO3]	[5M]
	b	Describe classification in machine learning.	[L2][CO3]	[5M]
1	а	Explain decision tree with an example.	[L2][CO3]	[5M]
4	b	Difference between univariate and multivariate decision tree.	[L2][CO3]	[5M]
ų	а	Generalize Alpha–Beta pruning Algorithm with example.	[L6][CO3]	[5M]
5	b	Compare and contrast parametric and non-parametric methods.	[L4][CO3]	[5M]
6	Expl	ain the following models. (i) Linear regression (ii) Logistic regression	[L2][CO3]	[5M]
	а	Analyze linear discrimination in machine learning.	[L4][CO3]	[5M]
7	b	Discriminate logistic discrimination analysis in machine learning.	[L5][CO3]	[5M]
	а	Illustrate multi-layer perception learning.	[L2][CO3]	[5M]
8	b	Analyze Regression discrimination in machine learning.	[L4][CO3]	[5M]
	а	Extend back propagation algorithm with example.	[L2][CO3]	[5M]
9	b	Explain Bayesian Decision Theory in artificial intelligence.	[L2][CO3]	[5M]
10	a	Implement for the finite words classification system using back propagation algorithm.	[L6][CO3]	[5M]
	b	Illustrate Gradient descent algorithm and its variants.	[L2][CO3]	[5M]

UNIT –IV

UNSUPERVISED LEARNING

1	a	What is unsupervised learning?	[L1][CO4]	[2M]
	b	Discuss short notes on clustering?	[L1][CO4]	[2M]
	c	Discuss the application of unsupervised learning?	[L1][CO4]	[2M]
	d	Differentiate between supervised learning and unsupervised learning	[L1][CO4]	[2M]
	e	What are latent variable models?	[L1][CO4]	[2M]
2	a	Write in detail about principle component analysis.	[L1][CO4]	[5M]
	b	How mixture density is calculated in unsupervised learning?	[L1][CO4]	[5M]
3	a	Demonstrate in detail about supervised learning after clustering.	[L2][CO4]	[5M]
	b	Illustrate about the spectral clustering in supervised learning.	[L2][CO4]	[5M]
4	a	Implement for the finite words classification system using back propagation algorithm.	[L4][CO4]	[5M]
-	b	Explain how to choose the number of clusters in USL?	[L2][CO4]	[5M]
5	a	Describe briefly about subset selection.	[L2][CO4]	[5M]
5	b	What are the similarities and differences between average-link clustering and k-means?	[L4][CO4]	[5M]
6	a	Generalize K-Means algorithm in Machine Learning.	[L6][CO4]	[5M]
0	b	How can we make k-means robust to outliers?	[L2][CO4]	[5M]
7	a	Illustrate in detail about multidimensional scaling?	[L2][CO5]	[5M]
7	b	Describe about Singular Value Decomposition and Matrix Factorization.	[L2][CO5]	[5M]
Q	a	Describe in detail about maximization algorithm?	[L2][CO4]	[5M]
8	b	In factor analysis, how can we find the remaining ones if we already know some of the factors?	[L2][CO5]	[5M]
9	a	Summarize about hierarchical learning?	[L2][CO4]	[5M]
	b	Tell about linear discriminate analysis?	[L1][CO5]	[5M]
1.2	a	Explain in detail about K-Means algorithm?	[L2][CO4]	[5M]
10	b	Write about factor analysis in unsupervised learning?	[L1][CO5]	[5M]

UNIT –V

REINFORCEMENT LEARNING

2	a	What is reinforcement learning?	[L1][CO6]	[2M]
	b	Write about density estimation?	[L1][CO6]	[2M]
	с	Discuss about nearest neighbor?	[L1][CO6]	[2M]
	d	Give some example for reinforcement learning?	[L1][CO6]	[2M]
	e	Compare unsupervised learning and reinforcement learning ?	[L2][CO6]	[2M]
	a	State and explain non parametric density estimation?	[L4][CO6]	[5M]
	b	How can we have a Smooth Histogram?	[L2][CO6]	[5M]
	а	Analyze the K-Nearest Neighbor Estimator	[L4][CO6]	[5M]
5	b	Elaborate non parametric classification?	[L6][CO6]	[5M]
4	а	Justify the condensed nearest neighbor?	[L5][CO6]	[5M]
	b	Discuss the term how Agents are interacts with an environments	[L2][CO6]	[5M]
5	а	Write in detail about single state case with an example?	[L1][CO6]	[5M]
5	b	What are the Elements are involving Reinforcement Learning using Markov process decision process (MDP)	[L1][CO6]	[5M]
6	а	Discuss the term i. Non parametric estimation ii. Instance based learning	[L2][CO6]	[10M]
	b	Elaborate model based learning with an example?	[L6][CO6]	[5M]
1 2 3 4 5 6 7 8 9 10	a	Illustrate in detail about K-armed bandit?	[L2][CO6]	[5M]
/	b	List and explain in detail about elements of reinforcement learning?	[L1][CO6]	[5M]
0	a	Describe Temporal Difference Learning	[L2][CO6]	[5M]
8	b	Elaborate model based learning with an example?	[L6][CO6]	[5M]
9	a	What is the use of temporal difference algorithms in reinforcement learning?	[L1][CO6]	[5M]
7	b	Explain in detail about partially observables state in learning?	[L2][CO6]	[5M]
10	a	Explain Sarsa algorithm, which is an on-policy version of Q learning	[L2][CO6]	[5M]
10	b	State and explain non parametric density estimation?	[L4][CO6]	[5M]

Prepared by: Manivannan M